↳ Prolog
↳ PrologToPiTRSProof
ack_in_gga(0, N, s(N)) → ack_out_gga(0, N, s(N))
ack_in_gga(s(M), 0, A) → U1_gga(M, A, ack_in_gga(M, s(0), A))
ack_in_gga(s(M), s(N), A) → U2_gga(M, N, A, ack_in_gga(s(M), N, A1))
U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) → U3_gga(M, N, A, ack_in_gga(M, A1, A))
U3_gga(M, N, A, ack_out_gga(M, A1, A)) → ack_out_gga(s(M), s(N), A)
U1_gga(M, A, ack_out_gga(M, s(0), A)) → ack_out_gga(s(M), 0, A)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
ack_in_gga(0, N, s(N)) → ack_out_gga(0, N, s(N))
ack_in_gga(s(M), 0, A) → U1_gga(M, A, ack_in_gga(M, s(0), A))
ack_in_gga(s(M), s(N), A) → U2_gga(M, N, A, ack_in_gga(s(M), N, A1))
U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) → U3_gga(M, N, A, ack_in_gga(M, A1, A))
U3_gga(M, N, A, ack_out_gga(M, A1, A)) → ack_out_gga(s(M), s(N), A)
U1_gga(M, A, ack_out_gga(M, s(0), A)) → ack_out_gga(s(M), 0, A)
ACK_IN_GGA(s(M), 0, A) → U1_GGA(M, A, ack_in_gga(M, s(0), A))
ACK_IN_GGA(s(M), 0, A) → ACK_IN_GGA(M, s(0), A)
ACK_IN_GGA(s(M), s(N), A) → U2_GGA(M, N, A, ack_in_gga(s(M), N, A1))
ACK_IN_GGA(s(M), s(N), A) → ACK_IN_GGA(s(M), N, A1)
U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) → U3_GGA(M, N, A, ack_in_gga(M, A1, A))
U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) → ACK_IN_GGA(M, A1, A)
ack_in_gga(0, N, s(N)) → ack_out_gga(0, N, s(N))
ack_in_gga(s(M), 0, A) → U1_gga(M, A, ack_in_gga(M, s(0), A))
ack_in_gga(s(M), s(N), A) → U2_gga(M, N, A, ack_in_gga(s(M), N, A1))
U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) → U3_gga(M, N, A, ack_in_gga(M, A1, A))
U3_gga(M, N, A, ack_out_gga(M, A1, A)) → ack_out_gga(s(M), s(N), A)
U1_gga(M, A, ack_out_gga(M, s(0), A)) → ack_out_gga(s(M), 0, A)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
ACK_IN_GGA(s(M), 0, A) → U1_GGA(M, A, ack_in_gga(M, s(0), A))
ACK_IN_GGA(s(M), 0, A) → ACK_IN_GGA(M, s(0), A)
ACK_IN_GGA(s(M), s(N), A) → U2_GGA(M, N, A, ack_in_gga(s(M), N, A1))
ACK_IN_GGA(s(M), s(N), A) → ACK_IN_GGA(s(M), N, A1)
U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) → U3_GGA(M, N, A, ack_in_gga(M, A1, A))
U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) → ACK_IN_GGA(M, A1, A)
ack_in_gga(0, N, s(N)) → ack_out_gga(0, N, s(N))
ack_in_gga(s(M), 0, A) → U1_gga(M, A, ack_in_gga(M, s(0), A))
ack_in_gga(s(M), s(N), A) → U2_gga(M, N, A, ack_in_gga(s(M), N, A1))
U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) → U3_gga(M, N, A, ack_in_gga(M, A1, A))
U3_gga(M, N, A, ack_out_gga(M, A1, A)) → ack_out_gga(s(M), s(N), A)
U1_gga(M, A, ack_out_gga(M, s(0), A)) → ack_out_gga(s(M), 0, A)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
ACK_IN_GGA(s(M), 0, A) → ACK_IN_GGA(M, s(0), A)
U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) → ACK_IN_GGA(M, A1, A)
ACK_IN_GGA(s(M), s(N), A) → U2_GGA(M, N, A, ack_in_gga(s(M), N, A1))
ACK_IN_GGA(s(M), s(N), A) → ACK_IN_GGA(s(M), N, A1)
ack_in_gga(0, N, s(N)) → ack_out_gga(0, N, s(N))
ack_in_gga(s(M), 0, A) → U1_gga(M, A, ack_in_gga(M, s(0), A))
ack_in_gga(s(M), s(N), A) → U2_gga(M, N, A, ack_in_gga(s(M), N, A1))
U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) → U3_gga(M, N, A, ack_in_gga(M, A1, A))
U3_gga(M, N, A, ack_out_gga(M, A1, A)) → ack_out_gga(s(M), s(N), A)
U1_gga(M, A, ack_out_gga(M, s(0), A)) → ack_out_gga(s(M), 0, A)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
ACK_IN_GGA(s(M), s(N)) → ACK_IN_GGA(s(M), N)
ACK_IN_GGA(s(M), s(N)) → U2_GGA(M, ack_in_gga(s(M), N))
ACK_IN_GGA(s(M), 0) → ACK_IN_GGA(M, s(0))
U2_GGA(M, ack_out_gga(A1)) → ACK_IN_GGA(M, A1)
ack_in_gga(0, N) → ack_out_gga(s(N))
ack_in_gga(s(M), 0) → U1_gga(ack_in_gga(M, s(0)))
ack_in_gga(s(M), s(N)) → U2_gga(M, ack_in_gga(s(M), N))
U2_gga(M, ack_out_gga(A1)) → U3_gga(ack_in_gga(M, A1))
U3_gga(ack_out_gga(A)) → ack_out_gga(A)
U1_gga(ack_out_gga(A)) → ack_out_gga(A)
ack_in_gga(x0, x1)
U2_gga(x0, x1)
U3_gga(x0)
U1_gga(x0)
From the DPs we obtained the following set of size-change graphs: